Simultaneous estimation of spatially dependent diffusion coefficient and source term in a nonlinear 1D diffusion problem
نویسندگان
چکیده
This work deals with the use of the conjugate gradient method in conjunction with an adjoint problem formulation for the simultaneous estimation of the spatially varying diffusion coefficient and of the source term distribution in a one-dimensional nonlinear diffusion problem. In the present approach, no a priori assumption is required regarding the functional form of the unknowns. This work can be physically associated with the detection of material non-homogeneities, such as inclusions, obstacles or cracks, in heat conduction, groundwater flow and tomography problems. Three versions of the conjugate gradient method are compared for the solution of the present inverse problem, by using simulated measurements containing random errors in the inverse analysis. Different functional forms, including those containing sharp corners and discontinuities, are used to generate the simulated measurements and to address the accuracy of the present solution approach. © 2004 IMACS. Published by Elsevier B.V. All rights reserved.
منابع مشابه
Solute Transport for Pulse Type Input Point Source along Temporally and Spatially Dependent Flow
In the present study, analytical solutions are obtained for two-dimensional advection dispersion equation for conservative solute transport in a semi-infinite heterogeneous porous medium with pulse type input point source of uniform nature. The change in dispersion parameter due to heterogeneity is considered as linear multiple of spatially dependent function and seepage velocity whereas seepag...
متن کاملSolute Transport for Pulse Type Input Point Source along Temporally and Spatially Dependent Flow
In the present study, analytical solutions are obtained for two-dimensional advection dispersion equation for conservative solute transport in a semi-infinite heterogeneous porous medium with pulse type input point source of uniform nature. The change in dispersion parameter due to heterogeneity is considered as linear multiple of spatially dependent function and seepage velocity whereas seepag...
متن کاملSimultaneous Inversion for Space-Dependent Diffusion Coefficient and Source Magnitude in the Time Fractional Diffusion Equation
We deal with an inverse problem of simultaneously identifying the space-dependent diffusion coefficient and the source magnitude in the time fractional diffusion equation from viewpoint of numerics. Such simultaneous inversion problem is often of severe ill-posedness as compared with that of determining a single coefficient function. The forward problem is solved by employing an implicit finite...
متن کاملIncremental Identification of Transport Coefficients in Convection-Diffusion Systems
In this paper, an incremental approach for the identification of a model for transport coefficients in convection-diffusion systems on the basis of high-resolution measurement data is presented. The transport is represented by a convection term with known convective velocity and by a diffusion term with an unknown, generally state-dependent transport coefficient. The identification of the trans...
متن کاملLeast – Squares Method For Estimating Diffusion Coefficient
Abstract: Determination of the diffusion coefficient on the base of solution of a linear inverse problem of the parameter estimation using the Least-square method is presented in this research. For this propose a set of temperature measurements at a single sensor location inside the heat conducting body was considered. The corresponding direct problem was then solved by the application of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematics and Computers in Simulation
دوره 66 شماره
صفحات -
تاریخ انتشار 2004